Publications by authors named "T Garrett"

Diverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses.

View Article and Find Full Text PDF

Reproducibility in untargeted metabolomics data processing remains a significant challenge due to software limitations and the complex series of steps required. To address these issues, we developed Nextflow4MS-DIAL, a reproducible workflow for liquid chromatography-mass spectrometry (LC-MS) metabolomics data processing, validated with publicly available data from MetaboLights (MTBLS733). Nextflow4MS-DIAL automates LC-MS data processing to minimize human errors from manual data handling.

View Article and Find Full Text PDF

A multivariate nutritional analysis indicated that the consumption of erucic acid-rich food, a fatty acid (FA) found primarily in rapeseed and mustard oil, was positively correlated with higher counts of lactic acid bacteria (LAB). Furthermore, we showed N6.2, as well as other species of LAB tested from the former genus, were able to efficiently use erucic acid (EA) as the source of FA.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly malignant and devastating brain cancer characterized by its ability to rapidly and aggressively grow, infiltrating brain tissue, with nearly universal recurrence after the standard of care (SOC), which comprises maximal safe resection followed by chemoirradiation (CRT). The metabolic triggers leading to the reprogramming of tumor behavior and resistance are an area increasingly studied in relation to the tumor molecular features associated with outcome. There are currently no metabolomic biomarkers for GBM.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed fecal samples from 18 anemic and 20 control infants at various postnatal ages, revealing that severe anemia correlates with increased virulence factors and significant alterations in gut metabolites.
  • * Findings suggest that severe anemia leads to a pro-inflammatory gut microbiome with more harmful bacterial activities, highlighting the need for further research on how these gut changes affect the health outcomes of preterm infants.
View Article and Find Full Text PDF