Mastitis is one of the most common diseases in dairy farms. During the perinatal period, the bovine mammary epithelial cells (BMECs) of High-yielding dairy cows accelerate metabolism and produce large amounts of reactive oxygen species (ROS). It is one of the primary causes of mastitis and will lead to the breakdown of redox balance, which will induce oxidative stress, inflammation, and apoptosis.
View Article and Find Full Text PDFChina's Three-North Protective Forest Program (TNP) is the world's most ambitious afforestation project (ongoing from 1978 to 2050), which aims to increase forest coverage through afforestation and reforestation, protect agriculture, reduce soil erosion, and control desertification. Although TNP has been ongoing for 45 years, its rationales and effects remain uncertain. Here, we conducted a range-wide assessment of TNP by analyzing data from >10,000 scenes of satellite images and >50,000 field survey plots.
View Article and Find Full Text PDFRuO has been considered as a promising, low-cost, and highly efficient catalyst in the acidic oxygen evolution reaction (OER). However, it suffers from poor stability due to the inevitable involvement of the lattice oxygen mechanism (LOM). Here, we construct a unique metallene-based core-skin structure and unveil that the OER pathway of atomic RuO skin can be regulated from the LOM to an adsorbate evolution mechanism by altering the core species from metallene oxides to metallenes.
View Article and Find Full Text PDFGinseng-containing Shentao Ruangan granules (STR) have been a well-known Chinese medicine prescription for the treatment of hepatocellular carcinoma (HCC) in China for decades. This study aimed to establish an experimental framework to decipher the underlying mechanism of STR in the treatment of HCC. Microarray analysis, network pharmacology, RNA-sequencing (RNA-seq), bioinformatics analysis, and and experiments were used as integrated approaches to uncover the effects and mechanisms of action of STR.
View Article and Find Full Text PDFBackground: The association between co-exposure to multiple air pollutants and the occurrence of chronic kidney disease (CKD) was not well-established, and the mediating role of accelerated aging in this association remained uncertain.
Methods: Using a cohort of 313,908 participants without CKD at baseline from the UK Biobank, we examined the potential association between co-exposure to multiple air pollutants, including PM, PM, PM, NO and NO, and the incidence of CKD by calculating an air pollution score. Mediation analyses were performed to examine the mediating role of accelerated aging (PhenoAgeAccel or KDM-BioAgeAccel) in this association.