Ru@Pt core-shell nanoparticles are currently being explored as carbon monoxide tolerant anode catalysts for proton exchange membrane fuel cells. However, little is known about their degradation under fuel cell conditions. In the present work, two types of Ru@Pt nanoparticles with nominal shell thicknesses of 1 (Ru@1Pt) and 2 (Ru@2Pt) Pt monolayers are studied as synthesized and after accelerated stress tests.
View Article and Find Full Text PDFPurpose: The continuum of mental health/illness has been subject to scientific debate for decades. While current research indicates that continuum belief interventions can reduce mental health stigma and improve treatment seeking in affected populations, no study has yet systematically examined measures of continuum beliefs.
Methods: This preregistered systematic review summarizes measures of continuum beliefs.
Background: Identifying risk factors for women at high risk of symptom-detected breast cancers that were missed by screening would enable targeting of enhanced screening regimens. To this end, we examined associations of breast cancer risk factors by mode of detection in screened women from the Cancer Prevention Study (CPS)-II Nutrition Cohort.
Methods: Among 77,206 women followed for a median of 14.
This work presents the synthesis of MoO/MoS core/shell nanoparticles within a carbon nanotube network and their detailed electron microscopy investigation in up to three dimensions. The triple-hybrid core/shell material was prepared by atomic layer deposition of molybdenum oxide onto carbon nanotube networks, followed by annealing in a sulfur-containing gas atmosphere. High-resolution transmission electron microscopy together with electron diffraction, supported by chemical analysis energy dispersive X-ray and electron energy loss spectroscopy, gave proof of a MoO core covered by few layers of a MoS shell within an entangled network of carbon nanotubes.
View Article and Find Full Text PDF