Publications by authors named "T Gabrecht"

Background And Study Aims: Low dose photodynamic therapy (LDPDT) may modify the mucosal immune response and may thus provide a therapy for Crohn's disease. We evaluated the efficacy and safety of this technique in a murine T cell-mediated colitis model.

Methods: The safety of LDPDT was first tested in BALB/c mice.

View Article and Find Full Text PDF

Time-resolved measurements of tissue autofluorescence (AF) excited at 405 nm were carried out with an optical-fiber-based spectrometer in the bronchi of 11 patients. The objectives consisted of assessing the lifetime as a new tumor/normal (T/N) tissue contrast parameter and trying to explain the origin of the contrasts observed when using AF-based cancer detection imaging systems. No significant change in the AF lifetimes was found.

View Article and Find Full Text PDF

To detect bronchial carcinoma by autofluorescence, we measured the spectra of tumor and normal tissue in situ, in an in vivo model and in vitro by fiber optic spectrometer and two-dimensional resolved microspectroscopy. The in situ measurements were performed in bronchi of nine patients with squamous cell carcinoma during regular bronchoscopy with autofluorescence assistance. The fluorescence was monitored with a fiber optical spectrometer under blue light excitation (lambda=405nm).

View Article and Find Full Text PDF

Background: Autofluorescence bronchoscopy (AFB) is a highly sensitive tool for the detection of early bronchial cancers. However, its specificity remains limited due to primarily false positive results induced by hyperplasia, metaplasia and inflammation. We have investigated the potential of blue-violet backscattered light to eliminate false positive results during AFB in a clinical pilot study.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) based on the use of photoactivable porphyrins, such as protoporphyrin IX (PpIX), induced by the topical application of amino-levulinic acid (ALA) or its derivatives, ALA methyl-ester (m-ALA), is a treatment for superficial basal cell carcinoma (BCC), with complete response rates of over 80%. However, in the case of deep, nodular-ulcerative lesions, the complete response rates are lower, possibly related to a lower bioavailability of PpIX. Previous in vitro skin permeation studies demonstrated an increased penetration of amino-levulinic acid hexyl-ester (h-ALA) over ALA.

View Article and Find Full Text PDF