The Myocyte enhancer factor-2 (MEF2) transcription factor plays a vital role in orchestrating muscle differentiation. While MEF2 cannot effectively induce myogenesis in naïve cells, it can potently accelerate myogenesis in mesodermal cells. This includes in Drosophila melanogaster imaginal disc myoblasts, where triggering premature muscle gene expression in these adult muscle progenitors has become a paradigm for understanding the regulation of the myogenic program.
View Article and Find Full Text PDFPhytaspases differ from other members of the plant subtilisin-like protease family by having rare aspartate cleavage specificity and unusual localization dynamics. Phytaspases are secreted from healthy plant cells but are re-internalized upon perception of death-inducing stresses. Although proteolytic activity is required for the secretion of plant subtilases, its requirement for the retrograde transportation of phytaspases is currently unknown.
View Article and Find Full Text PDFThe utility of 4-factor prothrombin complex concentrate (4F-PCC) for reversal in patients on factor Xa inhibitors (XaI) is unclear, specifically in mild traumatic brain injury (mTBI). This is a retrospective review over 6 years at a level 1 trauma center of patients presenting with mTBI on XaI comparing outcomes for those that received 4F-PCC to those that did not. 140 patients were included, 103 (74%) of these patients received 4F-PCC while 37 (26%) did not.
View Article and Find Full Text PDFObjective: Cryopreserved (CP) products are utilized during challenging cases when autogenous or prosthetic conduit use is not feasible. Despite decades of experience with cadaveric greater saphenous vein (GSV), there is limited available data regarding the outcomes and patency of other CP products, specifically arterial and deep venous grafts. This study was designed to evaluate outcomes of non-GSV CP conduits in patients undergoing urgent, emergent, and elective arterial reconstruction at our institution.
View Article and Find Full Text PDFBackground: The recognition of venous sinus stenosis as a contributing factor in the majority of patients with idiopathic intracranial hypertension coupled with increasing cerebral venography and venous sinus stenting experience have dramatically improved our understanding of the pathophysiologic mechanisms driving this disease. There is now a dense, growing body of research in the neurointerventional literature detailing anatomical and physiological mechanisms of disease which has not been widely disseminated among clinicians.
Methods: A literature search was conducted, covering the most recent neurointerventional literature on idiopathic intracranial hypertension, the pathophysiology of idiopathic intracranial hypertension, and management strategies (including venous sinus stenting), and subsequently summarized to provide a comprehensive review of the most recently published studies on idiopathic intracranial hypertension pathophysiology and management.