Lipids are a very heterogeneous class of biomolecules with distinct structures and functions. Total lipids (TLs) obtained from natural sources are regularly further separated into lipid subclasses, with the two major ones being the polar lipids (PLs) and neutral lipids (NLs). Traditional analytical methods for fractionating TLs into NLs, PLs, and their subclasses, usually comprise difficult, costly and time-consuming steps.
View Article and Find Full Text PDFPhycocyanobilin is a dark blue linear tetrapyrrole chromophore covalently attached to protein subunits of phycobiliproteins present in the light-harvesting complexes of the cyanobacteria Arthrospira platensis (Spirulina "superfood"). It shows exceptional health-promoting properties and emerging use in various fields of bioscience and industry. This study aims to examine the mutual impact of phycocyanobilin interactions with catalase, a life-essential antioxidant enzyme.
View Article and Find Full Text PDFA water soluble humic acid and melanin-like polymer complex (OMWW-ASP) was isolated from olive mill waste waters (OMWW) by ammonium sulfate fractionation to be used as natural additive in food preparations. The dark polymer complex was further characterized by a variety of biochemical, physicochemical and spectroscopic techniques. OMWW-ASP is composed mainly of proteins associated with polyphenols and carbohydrates and the distribution of its relative molecular size was determined between about 5 and 190 kDa.
View Article and Find Full Text PDFHerein a new approach of exploiting poultry litter (PL) is demonstrated. The suggested method includes drying of PL with simultaneously striping and recovery of ammonia, followed by the direct combustion of dried PL. The generated ash after the combustion, and the striped ammonia consequently, could be used as nutrient source for the cultivation of microalgae or cyanobacteria to produce feed additives.
View Article and Find Full Text PDFOxidative enzymatic reactions using horseradish peroxidase (HRP) were carried out in water-in-oil (w/o) microemulsions composed of olive oil/lecithin/1-propanol/water, a model biomimetic system. The substrates used (gallic acid, octyl gallate and 2,2'-azino-bis[3-ethylbenzo-thiazoline-6-sulfonic acid] (ABTS)) have different hydrophobicities and possible locations in the microemulsion system. HRP reactivity with reference to substrate hydrophobicity and structural characteristics of the microemulsions is discussed.
View Article and Find Full Text PDF