Publications by authors named "T G Sokolovska"

We propose a molecular theory of colloid-wall interactions in nematic media that predicts a new effective force acting on colloidal particles in the presence of an external field. In contrast to the so-called 'image' interaction that is always repulsive at long distances, the force identified here can be attractive or repulsive, depending on the type of anchoring at the wall and colloidal surfaces. The effective force on a colloidal particle decreases with distance s from the wall as exp(-s/ξ), where ξ is a magnetic (electric) coherence length.

View Article and Find Full Text PDF

The Ornstein-Zernike equation is applied to nematic colloids with up-down symmetry to determine how the electrostatic analogy and other phenomenological results appear in molecular theory. In contrast to phenomenological approaches, the molecular theory does not assume particular boundary conditions (anchoring) at colloidal surfaces. For our molecular parameters the resulting anchoring appears to be realistic, neither rigid nor infinitely weak.

View Article and Find Full Text PDF

An explicit expression for the wall-nematic direct correlation function (DCF) is obtained for any orientation of the wall with respect to an external orienting field. It is found that inside the surface of the wall, the DCF rapidly tends to a function of the nematogen orientation and depends only on parameters of the bulk fluid. We suggest that the wall-nematic DCF can be used as an ansatz for the colloid-nematic DCF in dilute nematic colloids.

View Article and Find Full Text PDF
Colloidal interactions in nematic fluids.

Phys Rev E Stat Nonlin Soft Matter Phys

February 2006

Microscopic theory is used to obtain effective interactions between colloidal particles in nematic fluids subjected to an external orienting field. It is shown that the field can dramatically change the effective intercolloidal interactions without altering the symmetry of the director configuration around a single particle. Our calculations suggest that a rich variety of colloidal structures can be promoted by varying the external field.

View Article and Find Full Text PDF

The structural perturbations induced by colloidal particles immersed in a model nematic subjected to an external field are calculated employing integral equation methods. Maps of the density-orientational distribution about a colloidal particle are obtained, and these provide a microscopic picture of the colloid's nematic coat. We focus on colloidal particles that favor homeotropic anchoring, but planar anchoring cases are also considered.

View Article and Find Full Text PDF