Publications by authors named "T G Pekun"

Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange.

View Article and Find Full Text PDF

Brain ischemia leads to a decrease in pHo. We have shown previously in synaptosomes that the extracellular acidification induces depolarization of mitochondria followed by synthesis of superoxide anions and oxidative stress. Here, we investigated the effects of lowered pHo on oxidative stress and membrane potentials in synaptosomes treated by the iron chelator deferoxamine and zinc chelator TPEN.

View Article and Find Full Text PDF

Brain ischemia is accompanied by lowering of intra- and extracellular pH. Stroke often leads to irreversible damage of synaptic transmission by unknown mechanism. We investigated an influence of lowering of pH(i) and pH(o) on free radical formation in synaptosomes.

View Article and Find Full Text PDF

The inhibitor of Rho-kinase Y-27632 induces non-secretory exocytosis in PC12 cells. The influence of this compound on central synapses remains uninvestigated. We showed that Y-27632 at the concentration 100 jtM led to spontaneous [14C]glutamate release in synaptosomes, which was not accompanied by plasma membrane depolarization.

View Article and Find Full Text PDF

Formation of reactive oxygen species in rat brain synaptosomes was studied using DCFDA fluorescent dye at lowered extracellular pH. It has been shown that decrease in pH value from 7.4 to 7.

View Article and Find Full Text PDF