Plutonium uranium reduction extraction (PUREX) is a liquid-liquid extraction process used to recover plutonium (Pu) and uranium (U) from irradiated uranium fuel for various nuclear-related applications. Despite extensive efforts, quantitative prediction of liquid-liquid extraction parameters, i.e.
View Article and Find Full Text PDFDuring nuclear fuel reprocessing, radioiodine, can be released. The speciation of iodine drives its volatility, and partitioning processes are highly variable because they depend on facility operating conditions. Starting from iodine behavior in the fuel and progressing to its behavior in the environment, this review article describes the current understanding of iodine partitioning during aqueous fuel reprocessing.
View Article and Find Full Text PDFThe review focuses on speciation and migration of anthropogenic ruthenium (Ru) originated from nuclear industry releases and presents updated information regarding Ru in the environment. It provides analysis of the main pathways of Ru species distribution in the aqueous and terrestrial environment, starting from its natural occurrence, generation and release from anthropogenic sources, predominant speciation, and ending with bioaccumulation, which can be directly or indirectly related to human health. Literature sources belonging to the post-Chernobyl time frame were preferentially considered, in which Ru-103 and Ru-106 are the major fission isotopes studied due to their traceability in the environment and their relatively long half-lives.
View Article and Find Full Text PDFNuclear power plays a pivotal role in ensuring a scalable, affordable, and reliable low-carbon electricity supply. Along with other low-carbon energy technologies, nuclear energy is essential for reducing our reliance on fossil fuels, addressing climate change and air pollution, and achieving a sustainable economy. Whilst significant progress has been made in reducing the volume of final radioactive waste, its management remains one of the most important challenges when considering the continued use and expansion of nuclear energy.
View Article and Find Full Text PDFMechanism of hexavalent chromium removal (Cr(VI) as CrO) by the weak-base ion exchange (IX) resin ResinTech® SIR-700-HP (SIR-700) from simulated groundwater is assessed in the presence of radioactive contaminants iodine-129 (as IO), uranium (U as uranyl UO), and technetium-99 (as TcO), and common environmental anions sulfate (SO) and chloride (Cl). Batch tests using the acid sulfate form of SIR-700 demonstrated Cr(VI) and U(VI) removal exceeded 97%, except in the presence of high SO concentrations (536 mg/L) where Cr(VI) and U(VI) removal decreased to ≥ 80%. However, Cr(VI) removal notably improved with co-mingled U(VI) that complexes with SO at the protonated amine sites.
View Article and Find Full Text PDF