Glucose stimulated insulin secretion is mediated by glucose metabolism via oxidative phosphorylation generating ATP that triggers membrane depolarization and exocytosis of insulin. In stressed beta cells, glucose metabolism is remodeled, with enhanced glycolysis uncoupled from oxidative phosphorylation, resulting in the impaired glucose-mediated insulin secretion characteristic of diabetes. Relative changes in glycolysis and oxidative phosphorylation can be monitored in living cells using the 3-component fitting approach of fluorescence lifetime imaging microscopy (FLIM).
View Article and Find Full Text PDFInsulin resistance is the major risk factor for Type 2 diabetes (T2D). In vulnerable individuals, insulin resistance induces a progressive loss of insulin secretion with islet pathology revealing a partial deficit of beta cells and islet amyloid derived from islet amyloid polypeptide (IAPP). IAPP is co-expressed and secreted with insulin by beta cells, expression of both proteins being upregulated in response to insulin resistance.
View Article and Find Full Text PDFAims/hypothesis: Type 2 diabetes is characterised by islet amyloid and toxic oligomers of islet amyloid polypeptide (IAPP). We posed the questions, (1) does IAPP toxicity induce an islet response comparable to that in humans with type 2 diabetes, and if so, (2) what are the key transcriptional drivers of this response?
Methods: The islet transcriptome was evaluated in five groups of mice: beta cell specific transgenic for (1) human IAPP, (2) rodent IAPP, (3) human calpastatin, (4) human calpastatin and human IAPP, and (5) wild-type mice. RNA sequencing data was analysed by differential expression analysis and gene co-expression network analysis to establish the islet response to adaptation to an increased beta cell workload of soluble rodent IAPP, the islet response to increased expression of oligomeric human IAPP, and the extent to which the latter was rescued by suppression of calpain hyperactivation by calpastatin.