Publications by authors named "T G Fetch"

Sr67 is a new stem rust resistance gene that represents a new resource for breeding stem rust resistant wheat cultivars Re-appearance of stem rust disease, caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), in different parts of Europe emphasized the need to develop wheat varieties with effective resistance to local Pgt populations and exotic threats.

View Article and Find Full Text PDF

Barley leaf rust, caused by , is an important disease of barley worldwide. The pathogen can develop new races that overcome resistance genes, emphasizing the need for monitoring its virulence. This study characterized 519 isolates collected in the United States from the 1989 to 2000 and 2010 to 2020 survey periods on 15 (Reaction to ) genes.

View Article and Find Full Text PDF

In the present era of climate instability, Canadian wheat production has been frequently affected by abiotic stresses and by dynamic populations of pathogens and pests that are more virulent and aggressive over time. Genetic diversity is fundamental to guarantee sustainable and improved wheat production. In the past, the genetics of Brazilian cultivars, such as Frontana, have been studied by Canadian researchers and consequently, Brazilian germplasm has been used to breed Canadian wheat cultivars.

View Article and Find Full Text PDF

Pyramiding multiple resistant genes has been proposed as the most effective way to control wheat rust diseases globally. Identifying the most effective pyramids is challenged by the large pool of rust resistance genes and limited information about their mechanisms of resistance and interactions. Here, using a high-density genetic map, a double haploid population, and multi-rust field testing, we aimed to systematically characterize the most effective gene pyramids for rust resistance from the durable multi-rust resistant CIMMYT cultivar Parula.

View Article and Find Full Text PDF