Publications by authors named "T G Farkas"

Background: Isotopologues resulting from the labelling of molecules with deuterium have attracted interest due to the isotope effect observed in chemistry and biosciences. Isotope effect may also play out in noncovalent interactions and mechanisms leading to intermolecular recognition. In chromatography, differences in retention time between isotopologues, as well as between isotopomers have been observed resulting in two different elution sequences (isotope effects): the normal isotope effect when heavier isotopologues retain longer than lighter analogues, and the inverse isotope effect featuring the opposite elution order.

View Article and Find Full Text PDF

Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.

View Article and Find Full Text PDF

Using bibliometric analysis of large-scale publication data is a simple approach to exploring gender-related trends, especially gender equality in academic publishing. The aim of this study is to investigate gender trends in the fields of bio-economy and rural development sciences in two under develop regions as Latin America and Africa. This study examines gender differences in these fields in order to: (1) recognize the contribution of female researchers in bioeconomy and rural development, (2) explore the relational structure of gender aspects in academic publications, (3) identify trends in female authorship in these scientific research fields over time, and finally (4) identify gender potentials for women to become more visible in these fields of study.

View Article and Find Full Text PDF

The stereochemical stability of the popular drugs of abuse 2-, 3- and 4-chloromethcathinone was studied in the mobile phase used for the isolation of their enantiomers by high-performance liquid chromatography, as well as in various biological matrixes such as whole blood, saliva and urine. For 2-, 3-, and 4-chloromethcathinones the rate constants and half-lives of their first order racemization reaction was assessed. It was found that at 25 °C the racemization rate constant decreases in the order 2-CMC > 3-CMC > 4-CMC while their stereochemical stability in biological matrixes decreases in the order urine > saliva > whole blood.

View Article and Find Full Text PDF