We introduce a flexible microscale all-fiber-optic Raman probe which can be embedded into devices to enable operando in situ spectroscopy. The facile-constructed probe is composed of a nested antiresonant nodeless hollow-core fiber combined with an integrated high refractive index barium titanate microlens. Pump laser 785 nm excitation and near-infrared collection are independently characterized, demonstrating an excitation spot of full-width-half-maximum 1.
View Article and Find Full Text PDFOptical monitoring and screening of photocatalytic batch reactions using cuvettes is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for reaction detection using ultraviolet-visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
November 2022
The effects of time-varying measurement noise on transmission matrix acquisition processes are considered for the first time, to our knowledge. Dominant noise sources are discussed, and the noise properties of a typical interferometer system used for characterizing a multimode fiber transmission matrix are quantified. It is demonstrated that an appropriate choice of measurement basis allows a more accurate transmission matrix to be more quickly obtained in the presence of measurement noise.
View Article and Find Full Text PDFHollow-core photonic crystal fibers (HC-PCFs) provide a novel approach for in situ UV/Vis spectroscopy with enhanced detection sensitivity. Here, we demonstrate that longer optical path lengths than afforded by conventional cuvette-based UV/Vis spectroscopy can be used to detect and identify the Co and Co states in hydrogen-evolving cobaloxime catalysts, with spectral identification aided by comparison with DFT-simulated spectra. Our findings show that there are two types of signals observed for these molecular catalysts; a transient signal and a steady-state signal, with the former being assigned to the Co state and the latter being assigned to the Co state.
View Article and Find Full Text PDF