Publications by authors named "T G Ballance"

Gate-model quantum computers promise to solve currently intractable computational problems if they can be operated at scale with long coherence times and high-fidelity logic. Neutral-atom hyperfine qubits provide inherent scalability owing to their identical characteristics, long coherence times and ability to be trapped in dense, multidimensional arrays. Combined with the strong entangling interactions provided by Rydberg states, all the necessary characteristics for quantum computation are available.

View Article and Find Full Text PDF

We present a design for an atomic oven suitable for loading ion traps, which is operated via optical heating with a continuous-wave multimode diode laser. The absence of the low-resistance electrical connections necessary for Joule heating allows the oven to be extremely well thermally isolated from the rest of the vacuum system. Extrapolating from high-flux measurements of an oven filled with calcium, we calculate that a target region number density of 100 cm, suitable for rapid ion loading, will be produced with 175(10) mW of heating laser power, limited by radiative losses.

View Article and Find Full Text PDF

We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two ^{88}Sr^{+} qubits are entangled via the polarization degree of freedom of two spontaneously emitted 422 nm photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beam splitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement.

View Article and Find Full Text PDF

Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error ε_{m} for a ^{43}Ca^{+} trapped-ion qubit in the small-error regime and find ε_{m}<10^{-4} for storage times t≲50  ms. This exceeds gate or measurement times by three orders of magnitude.

View Article and Find Full Text PDF

Ion traps are often loaded from atomic beams produced by resistively heated ovens. We demonstrate an atomic oven which has been designed for fast control of the atomic flux density and reproducible construction. We study the limiting time constants of the system and, in tests with Ca, show that we can reach the desired level of flux in 12 s, with no overshoot.

View Article and Find Full Text PDF