Publications by authors named "T Frigge"

The photoinduced structural dynamics of the atomic wire system on the Si(111)-In surface has been studied by ultrafast electron diffraction in reflection geometry. Upon intense fs-laser excitation, this system can be driven in around 1 ps from the insulating [Formula: see text] reconstructed low temperature phase to a metastable metallic [Formula: see text] reconstructed high temperature phase. Subsequent to the structural transition, the surface heats up on a 6 times slower timescale as determined from a transient Debye-Waller analysis of the diffraction spots.

View Article and Find Full Text PDF

Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds.

View Article and Find Full Text PDF

Ultrafast high energy electron diffraction in reflection geometry is employed to study the structural dynamics of self-organized Germanium hut-, dome-, and relaxed clusters on Si(001) upon femtosecond laser excitation. Utilizing the difference in size and strain state the response of hut- and dome clusters can be distinguished by a transient spot profile analysis. Surface diffraction from {105}-type facets provide exclusive information on hut clusters.

View Article and Find Full Text PDF

Many fundamental processes of structural changes at surfaces occur on a pico- or femtosecond time scale. In order to study such ultra-fast processes, we have combined modern surface science techniques with fs-laser pulses in a pump-probe scheme. Reflection high energy electron diffraction (RHEED) with grazing incident electrons ensures surface sensitivity for the probing electron pulses.

View Article and Find Full Text PDF