Superconducting Quantum Interference Devices (SQUIDs) can be used to detect neuromagnetic fields evoked in the peripheral and central nervous system. Up to now, such measurements had to be based on SQUIDs with a low critical temperature (Tc) requiring liquid helium cooling. Recent improvements in high-Tc SQUID technology relying on liquid nitrogen cooling led to a significant reduction in the system's noise level.
View Article and Find Full Text PDFWith low-temperature scanning electron microscopy, the magnetic flux states in high critical temperature Josephson junctions have been imaged. The experiments were performed with YBa(2)Cu(3)O(7-delta) thin-film grain boundary Josephson junctions fabricated on [001] tilt SrTiO(3) bicrystals. For applied magnetic fields parallel to the grain boundary plane, which correspond to local maxima of the magnetic field dependence of the critical current, the images clearly show the corresponding magnetic flux states in the grain boundary junction.
View Article and Find Full Text PDFPhys Rev B Condens Matter
September 1991
Phys Rev B Condens Matter
September 1988