Publications by authors named "T Flatscher-Bader"

Offspring of older fathers have an increased risk of various adverse health outcomes, including autism and schizophrenia. With respect to biological mechanisms for this association, there are many more germline cell divisions in the life history of a sperm relative to that of an oocyte. This leads to more opportunities for copy error mutations in germ cells from older fathers.

View Article and Find Full Text PDF

The hypothalamus is the central regulatory region of the brain that links the nervous system to the endocrine system via the pituitary gland. It synthesizes and secretes neuropeptide hormones, which in turn act to stimulate or inhibit the secretion of pituitary hormones. We have undertaken a detailed MS investigation of the peptides present in the bovine hypothalamus by adapting a novel heat stabilization methodology, which improved peptide discovery to direct our studies into the molecular mechanisms involved in bovine reproduction.

View Article and Find Full Text PDF

Background: The molecular mechanisms of exercise training induced cardiovascular protection are poorly understood. There is growing evidence that reactive oxygen species may be involved in a number of these adaptations and that antioxidants may be used to investigate this effect.

Objective: To determine the effects of exercise training and/or antioxidant supplementation on myocardial endothelium and vascular endothelium gene expression.

View Article and Find Full Text PDF

The offspring of older fathers have an increased risk of neurodevelopmental disorders, such as schizophrenia and autism. In light of the evidence implicating copy number variants (CNVs) with schizophrenia and autism, we used a mouse model to explore the hypothesis that the offspring of older males have an increased risk of de novo CNVs. C57BL/6J sires that were 3- and 12-16-months old were mated with 3-month-old dams to create control offspring and offspring of old sires, respectively.

View Article and Find Full Text PDF

Growth restriction, craniofacial dysmorphology, and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal or postnatal, but the underlying mechanisms remain unknown.We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome (e.

View Article and Find Full Text PDF