Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites.
View Article and Find Full Text PDFPlasminogen binding inhibitors (PBIs) reduce the risk of bleeding in hemorrhagic conditions. However, generic PBIs are also associated with an increased risk of seizures, an adverse effect linked to unwanted activities towards inhibitory neuronal receptors. Development of novel PBIs serve to remove compounds with such properties, but progress is limited by a lack of higher throughput methods with human translatability.
View Article and Find Full Text PDFIn this study, we compared affinity data from surface plasmon resonance (SPR) and weak affinity chromatography (WAC), two established techniques for determination of weak affinity (mM-μM) small molecule-protein interactions. In the current comparison, thrombin was used as target protein. In WAC the affinity constant (KD) was determined from retention times, and in SPR it was determined by Langmuir isotherm fitting of steady-state responses.
View Article and Find Full Text PDFA class of novel oral fibrinolysis inhibitors has been discovered, which are lysine mimetics containing an isoxazolone as a carboxylic acid isostere. As evidenced by X-ray crystallography the inhibitors bind to the lysine binding site in plasmin thus preventing plasmin from binding to fibrin, hence blocking the protein-protein interaction. Optimization of the series, focusing on potency in human buffer and plasma clotlysis assays, permeability, and GABAa selectivity, led to the discovery of AZD6564 (19) displaying an in vitro human plasma clot lysis IC50 of 0.
View Article and Find Full Text PDFPreclinical data indicate that GPR103 receptor and its endogenous neuropeptides QRFP26 and QRFP43 are involved in appetite regulation. A high throughput screening (HTS) for small molecule GPR103 antagonists was performed with the clinical goal to target weight management by modulation of appetite. A high hit rate from the HTS and initial low confirmation with respect to functional versus affinity data challenged us to revise the established screening cascade.
View Article and Find Full Text PDF