Publications by authors named "T Feichtner"

Article Synopsis
  • The study highlights that traditional light scattering analysis of plasmonic nanoparticles doesn't account for the finite thickness of real interfaces, which leads to unique surface effects due to quantum electron behavior.
  • By using electrical gating, the research investigates how charging single plasmonic nanoresonators affects light scattering, revealing that both resonance shifts and changes in resonance width can happen.
  • The findings suggest that these nonclassical surface responses could have significant applications in creating electrically controlled plasmonic devices and metasurfaces.
View Article and Find Full Text PDF

Achieving reliable and quantifiable performance in large-area surface-enhanced Raman spectroscopy (SERS) substrates poses a formidable challenge, demanding signal enhancement while ensuring response uniformity and reproducibility. Conventional SERS substrates often made of inhomogeneous materials with random resonator geometries, resulting in multiple or broadened plasmonic resonances, undesired absorptive losses, and uneven field enhancement. These limitations hamper reproducibility, making it difficult to conduct comparative studies with high sensitivity.

View Article and Find Full Text PDF

When photons interact with matter, forces and torques occur due to the transfer of linear and angular momentum, respectively. The resulting accelerations are small for macroscopic objects but become substantial for microscopic objects with small masses and moments of inertia, rendering photon recoil very attractive to propel micro- and nano-objects. However, until now, using light to control object motion in two or three dimensions in all three or six degrees of freedom has remained an unsolved challenge.

View Article and Find Full Text PDF

We employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry PT and chiral symmetry anti-PT (APT). The topological structure manifests itself in the complex admittance bands which yields excellent measurability and signal to noise ratio. We analyze the impact of PT-symmetric gain and loss on localized edge and defect states in a non-Hermitian Su-Schrieffer-Heeger (SSH) circuit.

View Article and Find Full Text PDF

Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks.

View Article and Find Full Text PDF