Publications by authors named "T Farquhar"

Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .

View Article and Find Full Text PDF

This article describes a case of peripheral ossifying fibroma in a 12-year-old girl. Clinical, radiographic and histologic characteristics are discussed and recommendations regarding differential diagnosis, treatment and follow-up are provided. The importance of excellent communication with patients is emphasized.

View Article and Find Full Text PDF

In the field of fracture mechanics, an analytical framework has been established for understanding the mechanical failure of any structure made of inherently flawed materials. In the context of botany, this includes an extraordinarily wide variety of turgid and/or woody structures made of cellulose-based tissues, the diverse soils penetrated by their roots, and a multitude of plant-based commodities and foodstuffs. The goal of this article is to provide an overview of the theory of engineering fracture mechanics and to identify some special characteristics of wood and other plant-based materials that require further development in this area.

View Article and Find Full Text PDF

We seek the ideal wheat stalk, which minimizes the structural mass required to support a fixed grain load in the presence of gravity and wind. The optimization search is restricted to stepped cylindrical stems of known moduli and density but unknown dimension. Stem buckling and root anchorage strength are assumed to place restrictions on the permissible stalk resonant frequency in the presence of a specified wind forcing frequency.

View Article and Find Full Text PDF

The objective of this study was to quantify the effect of specific physical and biological factors on the relative likelihood of biomechanical failure in wheat. Wind-related crop damage is a major obstacle to wheat production that costs several billion dollars per year. The four factors varied in this study were breeding line, dwarfing gene dose, soil type, and fertilization.

View Article and Find Full Text PDF