Publications by authors named "T F Peretolchina"

Endemic amphipods (Crustacea: Amphipoda) of Lake Baikal represent an outstanding example of large species flocks occupying a wide range of ecological niches and originating from a handful of ancestor species. Their development took place at a restricted territory and is thus open for comprehensive research. Such examples provide unique opportunities for studying behavioral, anatomic, or physiological adaptations in multiple combinations of environmental conditions and thus attract considerable attention.

View Article and Find Full Text PDF

The diversity of macroinvertebrates, the structure of their communities in Bolshiye Koty Bay (Lake Baikal) was studied by a DNA metabarcoding approach using an Illumina MiSeq system. Internal primer mlCOIintF in combination with jgHCO2198 of the Folmer fragment of the COI gene were used for macroinvertebrate metabarcoding. A total of 118009 reads of the COI gene fragment (at least 313 bp in length) were obtained.

View Article and Find Full Text PDF

DNA repeat composition of low coverage (0.1-0.5) genomic libraries of four amphipods species endemic to Lake Baikal (East Siberia) and four endemic gastropod species of the fam.

View Article and Find Full Text PDF

Here we report new data describing the biodiversity of phytobenthic communities based on DNA-metabarcoding using the 18S rDNA marker and the Illumina MiSeq system. The study was initiated due to the blooming of f ilamentous algae (mainly of the genus Spirogyra) and cyanobacteria in the coastal zone of Lake Baikal under climate change and anthropogenic impact. The composition and taxonomic diversity of algae and other organisms associated with them on different sites of Lake Baikal (near Bolshoi Ushkaniy Island, in Listvennichny Bay) and in the Kaya (within the city of Irkutsk, located in the same drainage basin as Lake Baikal) were determined using DNAmetabarcoding.

View Article and Find Full Text PDF

In this paper, we revealed the genetic structure and migration history of the Powassan virus (POWV) reconstructed based on 25 complete genomes available in NCBI and ViPR databases (accessed in June 2021). The usage of this data set allowed us to perform a more precise assessment of the evolutionary rate of this virus. In addition, we proposed a simple Bayesian technique for the evaluation and visualization of 'temporal signal dynamics' along the phylogenetic tree.

View Article and Find Full Text PDF