Publications by authors named "T F Jin"

Background: 24-h movement behaviors have a close relationship with children and adolescents' cognition, gray matter volume, and academic performance. This systematic review aims to precisely explore the associations between meeting different combinations of guidelines and the aforementioned indicators, in order to better serve public health policy.

Methods: Computer retrieval was conducted on CNKI, Web of Science, PubMed, SPORT Discus and Cochrane library databases.

View Article and Find Full Text PDF
Article Synopsis
  • Solid-state polymer electrolytes (SPEs) are gaining attention for sodium metal batteries (SMBs) due to their flexibility and lower interfacial resistance, but they struggle with sodium ion conductivity and unstable interfaces.
  • A novel composite electrolyte called PPNM is created by integrating a 3D copper metal organic framework (Cu-MOF) with polyacrylonitrile (PAN) fibers and polyethylene oxide (PEO), enhancing ionic conductivity and sodium ion movement.
  • The improved stability and performance of the PPNM electrolyte lead to strong cycling results for Na3V2(PO4)3@C/PPNM/Na full cells, making it a promising strategy for advancing solid-state SMB technology.
View Article and Find Full Text PDF

Background: Species that experience outbreaks and those that display density-dependent phase polymorphism demonstrate density-dependent prophylaxis (DDP) by increasing their immune investment in response to increasing densities. Despite this phenomenon, the mechanisms of DDP remain largely unexplored.

Results: Here, we showed that Spodoptera litura exhibited heightened cuticular melanization and enhanced cuticular immune responses when reared at higher population density.

View Article and Find Full Text PDF

As promising bifunctional electrocatalysts, transition metal nitrides are expected to achieve an efficient hydrazine oxidation reaction (HzOR) by fine-tuning electronic structure via strain engineering, thereby facilitating hydrogen production. However, understanding the correlation between strain-induced atomic microenvironments and reactivity remains challenging. Herein, a generalized compressive strained W-NiN catalyst is developed to create a surface with enriched electronic states that optimize intermediate binding and activate both water and NH.

View Article and Find Full Text PDF