Publications by authors named "T F Gundogdu"

We introduce and numerically validate the concept of few-layer bifunctional metasurfaces comprising two arrays of quasiplanar subwavelength resonators and a middle grid (array of rectangular holes) that offer both symmetric and asymmetric transmissions connected, respectively, with symmetric and asymmetric polarization-plane rotation functionalities. The proposed structures are thinner than and free of diffractions. Usually, the structure's symmetry or asymmetry, i.

View Article and Find Full Text PDF

Asymmetric beaming in a piecewise-linear propagation channel is demonstrated for a single photonic-crystal prism at Gaussian-beam illumination. The used hybrid refraction-diffraction mechanism exploits oblique incidence, the first-negative-order deflection at the longer interface, and asymmetry in coupling at the exit interfaces and does not need blocking of transmission by dispersion in the backward illumination case. The Floquet-Bloch mode with left-handed behavior and nearly circular equifrequency dispersion contours is utilized.

View Article and Find Full Text PDF

Using transmission and reflection measurements under normal incidence in one and three layers of a mum-scale metamaterial consisting of pairs of short-slabs and continuous wires, fabricated by a photolithography procedure, we demonstrate the occurrence of a negative refractive index regime in the far infrared range, ~2.4-3 THz. The negative index behavior in that system at ~2.

View Article and Find Full Text PDF

We report on the fabrication, through photolithography techniques, and the detailed characterization, through direct transmission measurements, of a periodic system composed of five layers of photolithographically aligned micrometer-sized Ag split-ring resonators (SRRs). The measured transmission spectra for propagation perpendicular to the SRRs plane show a gap around 6 THz for one of the two possible polarizations of the incident electric field; this indicates the existence of a magnetic resonance, which is verified by detailed theoretical analysis. To our knowledge this is the first time that a system of more than one layer of micrometer-sized SRRs has been fabricated.

View Article and Find Full Text PDF