Publications by authors named "T F Beyer"

Background/objectives: Schlafen12 (SLFN12) is an intermediate human Schlafen protein shown to correlate with survivability in triple-negative breast cancer (TNBC). SLFN12 causes differential expressions of significant cancer genes, but how they change in response to chemotherapy remains unknown. Our aim is to identify the effect of chemotherapy on genes that improve TNBC outcomes and other SLFN family members following SLFN12 knockout or overexpression.

View Article and Find Full Text PDF

Purpose: To characterize the 3D geometry of the distal tibia resection area from healthy individuals using CT-based digital implantation for proper preoperative sizing of TAA tibia component placement.

Methods: Standardized CT images of healthy ankle joints serving as intra-individual references for treatment of contralateral injuries were identified. The tibial cross section dedicated to virtually host the tibial component was digitally prepared, and the size of the virtual contact surface was calculated.

View Article and Find Full Text PDF

Background: Cancer-associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non-imaging criteria. Given the metabolic underpinnings of CAC and the ability of [F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole-body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC.

View Article and Find Full Text PDF

Tirzepatide, a glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor (GIPR/GLP-1R) agonist, has, in clinical trials, demonstrated greater reductions in glucose, body weight, and triglyceride levels compared with selective GLP-1R agonists in people with type 2 diabetes (T2D). However, cellular mechanisms by which GIPR agonism may contribute to these improved efficacy outcomes have not been fully defined. Using human adipocyte and mouse models, we investigated how long-acting GIPR agonists regulate fasted and fed adipocyte functions.

View Article and Find Full Text PDF