Since being first published in 2018, the use of two-dimensional MXene in solar cells has attracted significant interest. This study presents, for the first time, the synthesis of an efficient hybrid electrocatalyst in the form of a nanocomposite (MXene/CoS)-SnO designed to function as a high-performance electron transfer layer (ETL). The study can be divided into three distinct parts.
View Article and Find Full Text PDFThis article discusses the design and preparation of a modified MXene-based nanocomposite for increasing the power conversion efficiency and long-term stability of perovskite solar cells. The MXene family of materials among 2D nanomaterials has shown considerable promise in enhancing solar cell performance because of their remarkable surface-enhanced characteristics. Firstly, there are a variety of approaches to making MXene-reinforced composites, from solution mixing to powder metallurgy.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2021
This article discusses the application of two-dimensional metal MXenes in solar cells (SCs), which has attracted a lot of interest due to their outstanding transparency, metallic electrical conductivity, and mechanical characteristics. In addition, some application examples of MXenes as an electrode, additive, and electron/hole transport layer in perovskite solar cells are described individually, with essential research issues highlighted. Firstly, it is imperative to comprehend the conversion efficiency of solar cells and the difficulties of effectively incorporating metal MXenes into the building blocks of solar cells to improve stability and operational performance.
View Article and Find Full Text PDF