Publications by authors named "T Espeseth"

Article Synopsis
  • Subcortical brain structures play a crucial role in various developmental and psychiatric disorders, and a study analyzed brain volumes in 74,898 individuals, identifying 254 genetic loci linked to these volumes, which accounted for up to 35% of variation.
  • The research included exploring gene expression in specific neural cell types, focusing on genes involved in intracellular signaling and processes related to brain aging.
  • The findings suggest that certain genetic variants not only influence brain volume but also have potential causal links to conditions like Parkinson’s disease and ADHD, highlighting the genetic basis for risks associated with neuropsychiatric disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Subcortical brain structures play a crucial role in various disorders, and a study analyzed the genetic basis of brain volumes in nearly 75,000 individuals of European ancestry, revealing 254 loci linked to these volumes.
  • The research identified significant gene expression in neural cells, relating to brain aging and signaling, and found that polygenic scores could predict brain volumes across different ancestries.
  • The study highlights genetic connections between brain volumes and conditions like Parkinson's disease and ADHD, suggesting specific gene expression patterns could be involved in neuropsychiatric disorders.
View Article and Find Full Text PDF

Over the past few years, several studies have explored the relationship between resting-state baseline pupil size and cognitive abilities, including fluid intelligence, working memory capacity, and attentional control. However, the results have been inconsistent. Here we present the findings from two experiments designed to replicate and expand previous research, with the aim of clarifying previous mixed findings.

View Article and Find Full Text PDF
Article Synopsis
  • Carriers of specific genetic variants (1q21.1 distal and 15q11.2 BP1-BP2) show both regional and global brain structure differences compared to noncarriers, but analyzing these differences can be complicated.
  • The study used MRI data from various groups (carriers and noncarriers) to assess how regional brain characteristics diverge from overall brain structure differences.
  • Findings revealed that certain brain regions in carriers exhibited distinct patterns of cortical surface area and thickness that deviated from the global average, suggesting more complex effects of these genetic variants on brain development.
View Article and Find Full Text PDF

Introduction: Brain age, the estimation of a person's age from magnetic resonance imaging (MRI) parameters, has been used as a general indicator of health. The marker requires however further validation for application in clinical contexts. Here, we show how brain age predictions perform for the same individual at various time points and validate our findings with age-matched healthy controls.

View Article and Find Full Text PDF