J Colloid Interface Sci
February 2025
While free radical polymerization methods are employed frequently to prepare sub-micron polymer particles, we hypothesized that surfactant-free emulsion polymerization (SFEP) methodology may prove beneficial for obtaining functional polymer particles by solution polymerization methods that preclude the need for conventional surfactants. To test the effectiveness of SFEP for the preparation of functional colloids, solution polymerization of several monomers, including propargyl acrylate (PA), styrene (Sty) and tert-butyl acrylate (t-BA), was performed over a range of monomer ratios and reaction scales. Electron microscopy and infrared spectroscopy were employed to evaluate the outcome of SFEP for particle size, shape, surface anisotropy, and chemical composition.
View Article and Find Full Text PDFDisulfide-containing polyolefins were synthesized by ring-opening metathesis polymerization (ROMP) of the 6-membered disulfide-containing cyclic olefin, 3,6-dihydro-1,2-dithiine, which was prepared by ring-closing metathesis of diallyl disulfide. This approach facilitated the production of disulfide-containing unsaturated polyolefins as copolymers with disulfide monomer units embedded within a poly(cyclooctene) or poly(norbornene) framework. The incorporation of disulfides into the polymer backbone imparts redox responsiveness and enables polymer degradation chemical reduction or thiol-disulfide exchange.
View Article and Find Full Text PDFUnderstanding the electronic properties resulting from soft-hard material interfacial contact has elevated the utility of functional polymers in advanced materials and nanoscale structures, such as in work function engineering of two-dimensional (2D) materials to produce new types of high-performance devices. In this paper, we describe the electronic impact of functional polymers, containing both zwitterionic and fluorocarbon components in their side chains, on the work function of monolayer graphene through the preparation of negative-tone photoresists, which we term "fluorozwitterists." The zwitterionic and fluorinated groups each represent dipole-containing moieties capable of producing distinct surface energies as thin films.
View Article and Find Full Text PDFWe report the use of fluorinated polymer zwitterions to build hybrid systems for efficient CO electroreduction. The unique combination of hydrophilic phosphorylcholine and hydrophobic fluorinated moieties in these polymers creates a fractal structure with mixed branched cylinders on the surface of gold nanoparticles (AuNPs). In the presence of these polymers, the CO faradaic efficiency improves by 50-80% in the range of -0.
View Article and Find Full Text PDF