Running world records (WRs) contain information about physiological characteristics that determine running performance. The progression of WRs over time encode the evolution of these characteristics. Here we demonstrate that a previously established model for running performance describes WRs since 1918 for men and since 1984 for women with high accuracy.
View Article and Find Full Text PDFRecent measurements of Casimir forces have provided evidence of an intricate modification of quantum fluctuations of the electromagnetic field in complex geometries. Here we introduce a multiple scattering description for Casimir interactions between bodies of arbitrary shape and material composition, admitting an expansion as a sequence of inter- and intra-body wave scatterings. Interactions in complex geometries can be computed within the current experimental resolution from typically a few wave scatterings, notably without any a priori knowledge of the scattering amplitudes of the bodies.
View Article and Find Full Text PDFWearable exercise trackers provide data that encode information on individual running performance. These data hold great potential for enhancing our understanding of the complex interplay between training and performance. Here we demonstrate feasibility of this idea by applying a previously validated mathematical model to real-world running activities of ≈ 14,000 individuals with ≈ 1.
View Article and Find Full Text PDFFluctuations of the human heart beat constitute a complex system that has been studied mostly under resting conditions using conventional time series analysis methods. During physical exercise, the variability of the fluctuations is reduced, and the time series of beat-to-beat RR intervals (RRIs) become highly non-stationary. Here we develop a dynamical approach to analyze the time evolution of RRI correlations in running across various training and racing events under real-world conditions.
View Article and Find Full Text PDFModels for human running performances of various complexities and underlying principles have been proposed, often combining data from world record performances and bio-energetic facts of human physiology. The purpose of this work is to develop a novel, minimal and universal model for human running performance that employs a relative metabolic power scale. The main component is a self-consistency relation for the time dependent maximal power output.
View Article and Find Full Text PDF