In tissue engineering applications, sacrificial molding of hydrogel monoliths is a versatile technique for creating 3D molds to control tissue morphology. Previous sacrificial templates fabricated by serial processes such as solvent casting and thermal extrusion/fiber drawing can be used to effectively mold internal geometries within rapidly polymerizing, bulk curing hydrogels. However, they display poorer performance in controlling the geometry of diffusion limited, ionically cross-linked hydrogels, such as alginate.
View Article and Find Full Text PDFThe processability of injection molding ultra-high molecular weight polyethylene (UHMWPE) was improved by introducing supercritical nitrogen (scN₂) or supercritical carbon dioxide (scCO₂) into the polymer melt, which decreased its viscosity and injection pressure while reducing the risk of degradation. When using the special full-shot option of microcellular injection molding (MIM), it was found that the required injection pressure decreased by up to 30% and 35% when scCO₂ and scN₂ were used, respectively. The mechanical properties in terms of tensile strength, Young's modulus, and elongation-at-break of the supercritical fluid (SCF)-loaded samples were examined.
View Article and Find Full Text PDFThe SOX10 gene plays a vital role in neural crest cell development and migration. Abnormalities in SOX10 are associated with Waardenburg syndrome Types II and IV, and these patients have recognizable clinical features. This case report highlights the first ever reported homozygous loss of function of the SOX10 gene in a human.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2017
Hydroxyapatite (HA) and Halloysite nanotubes (HNTs) percentages have been optimized in Polycaprolactone (PCL) polymeric matrices to improve mechanical, thermal and biological properties of the composites, thus, to be applied in bone tissue engineering or as fixation plates. Addition of HA guarantees a proper compatibility with human bone due to its osteoconductive and osteoinductive properties, facilitating bone regeneration in tissue engineering applications. Addition of HNTs ensures the presence of tubular structures for subsequent drug loading in their lumen, of molecules such as curcumin, acting as controlled drug delivery systems.
View Article and Find Full Text PDFPoly(ethylene glycol) (PEG)-grafted cellulose nanocrystals (CNCs) were successfully synthesized and incorporated into poly(lactic acid) (PLA) as a reinforcing filler to produce nanocomposite scaffolds consisting of CNC-g-PEG and PLA using an electrospinning technique. Morphological, thermal, mechanical, and wettability properties as well as preliminary biocompatibility using human mesenchymal stem cells (hMSCs) of PLA/CNC and PLA/CNC-g-PEG nanocomposite scaffolds were characterized and compared. The average diameter of the electrospun nanofibers decreased with increased filler loading level, due to the increased conductivity of the electrospun solutions.
View Article and Find Full Text PDF