https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=Egorova-Zachernyuk+T%5Bauthor%5D&datetype=edat&usehistory=y&retmax=1&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_6795798f3fa732f39a05ef45&query_key=1&retmode=xml&retstart=-10&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
The carbon metabolism of two marine sponges, and , has been studied using a C isotope pulse-chase approach. The sponges were fed C-labeled diatoms () for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total C enrichment, and fatty acid (FA) composition and C enrichment.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2011
Uniform stable-isotope labeling of mammalian cells is achieved via a novel formulation of a serum-free cell culture medium that is based on stable-isotope-labeled autolysates and lipid extracts of various microbiological origin. Yeast autolysates allow complete replacement of individual amino acids and organic acids in a chemically defined medium (DMEM/F12), enabling a cost-effective formulation of a stable-isotope-labeled culture medium for mammalian cells. In addition, biomass-derived hydrolysates, autolysates, and lipid extracts of various classes of algae were explored as cell culture components, both separately and in combination with yeast autolysates.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2009
Preparation of stable isotope-labelled yeastolates opens up ways to establish more cost-effective stable isotope labelling of biomolecules in insect and mammalian cell lines and hence to employ higher eukaryotic cell lines for stable isotope labelling of complex recombinant proteins. Therefore, we evaluated several common yeast strains of the Saccharomycetoideae family as a source of high-quality, non-toxic yeastolates with the major aim to find a primary amino acid source for insect and mammalian cell culture that would allow cost-effective uniform stable isotope labelling (13C, 15N). Strains of the facultative methylotrophic yeasts Pichia pastoris and Hansenula polymorpha (Pichia angusta) as well as a strain of the baker's yeast Saccharomyces cerevisiae were compared as a source of yeastolate with respect to processing, recovery and ability to sustain growth of insect and mammalian cell lines.
View Article and Find Full Text PDFAn FT-IR spectroscopic method was developed for the simultaneous quantitative analysis of biomacromolecular components in biomass, originating from various microbiological sources. For the determination of protein, lipid and carbohydrate content, creatine phosphokinase, egg phosphatidyl choline and starch hydrolysate were chosen as external standards. This selection was based on spectral similarity and ease of availability.
View Article and Find Full Text PDF