Publications by authors named "T Egelrud"

Neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation. High NSP levels can be detrimental, particularly in lung tissue, and inhibition of NSPs is therefore an interesting therapeutic opportunity in multiple lung diseases, including chronic obstructive pulmonary disease (COPD) and bronchiectasis. We conducted a randomized, placebo-controlled, first-in-human study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of the DPP1 inhibitor AZD7986 in healthy subjects.

View Article and Find Full Text PDF

A previously unreported Kazal-type serine protease inhibitor, serine protease inhibitor Kazal type 9 (SPINK9), was identified in human skin. SPINK9 expression was strong in palmar epidermis, but not detectable or very low in non palmoplantar skin. Analysis of a human cDNA panel showed intermediate expression in thymus, pancreas, liver, and brain, and low or undetectable expression in other tissues.

View Article and Find Full Text PDF

Proteinase-activated receptor-2 (PAR2) is a seven transmembrane spanning, G-protein-coupled receptor, present on the membrane of many cell types including keratinocytes. In skin, PAR2 is suggested to play a regulatory role during inflammation, epidermal barrier function, and pruritus. PAR2 is activated by trypsin-like proteases by a unique mechanism where cleavage of the receptor leads to the release of a small peptide, which activates the receptor as a tethered ligand.

View Article and Find Full Text PDF

We have previously presented evidence that two human kallikrein-related peptidases, KLK5 (hK5, stratum corneum tryptic enzyme, SCTE) and KLK7 (hK7, stratum corneum chymotryptic enzyme, SCCE), which are abundant in the stratum corneum, may be involved in desquamation. Since we had noted that not all trypsin-like activity in the plantar stratum corneum could be ascribed to KLK5, we set out to identify other skin proteases with similar primary substrate specificity. Here we describe purification of a protease identified as KLK14 from plantar stratum corneum, and show that this enzyme may be responsible for as much as 50% of the total trypsin-like activity in this tissue, measured as activity towards a chromogenic substrate cleaved by a wide variety of enzymes with trypsin-like specificity.

View Article and Find Full Text PDF