Primary ciliary dyskinesia (PCD) is a respiratory disease caused by dysfunction of the cilia with currently no approved treatments. This predominantly autosomal recessive disease is caused by mutations in any one of over 50 genes involved in cilia function; DNAI1 is one of the more frequently mutated genes, accounting for approximately 5-10% of diagnosed PCD cases. A codon-optimized mRNA encoding DNAI1 and encapsulated in a lipid nanoparticle (LNP) was administered to mice via aerosolized inhalation resulting in the expression human DNAI1 in the multiciliated cells of the pseudostratified columnar epithelia.
View Article and Find Full Text PDFThe paradigm of homogenous-sugar-backbone of RNA and DNA has reliably guided the construction of many functional and useful xeno nucleic acid (XNA) systems to date. Deviations from this monotonous and canonical design, in many cases, results in oligonucleotide systems that lack base pairing with themselves, or with RNA or DNA. Here we show that nucleotides of two such compromised XNA systems can be combined with RNA and DNA in specific patterns to produce chimeric-backbone oligonucleotides, which in certain cases demonstrate base pairing properties comparable to-or stronger than-canonical systems, while also altering the conventional Watson-Crick pairing behavior.
View Article and Find Full Text PDFCurr Protoc Nucleic Acid Chem
March 2015
Microwave-assisted chemical phosphitylation of novel nucleoside analogs containing a ribulose sugar unit was successful with yields ranging from 50% to 79% using 2-cyanoethyl-N,N-diisopropyl chlorophosphoramidite as the phosphitylating reagent. The resultant phosphoramidite products remained intact, with no signs of degradation over extended reaction times (up to 60 min) at an elevated temperature (65°C). When the same microwave-mediated phosphitylating protocols were applied to canonical DNA and RNA nucleoside monomers as substrates, using either 2-cyanoethyl-N,N,-diisopropyl chlorophosphoramidite or 2-cyanoethyl-N,N,N',N'-tetraisopropyl phosphane with an activator, 40% to 90% yields of DNA and RNA phosphoramidites were obtained within 10 to 15 min.
View Article and Find Full Text PDFCurr Protoc Nucleic Acid Chem
December 2014
Triazole-backbone oligonucleotides are macromolecules that have one or more triazole units that are acting as a backbone mimic. Triazoles within the backbone have been used within oligonucleotides for a variety of applications. This unit describes the preparation and synthesis of two triazole-nucleoside phosphoramidites [uracil-triazole-uracil (UtU) and cytosine-triazole-uracil (CtU)] based on a PNA-like scaffold, and their incorporation within oligonucleotides.
View Article and Find Full Text PDFMicrowave-assisted phosphitylation of sterically hindered nucleosides is demonstrated to be an efficient method for the preparation of corresponding phosphoramidites (otherwise onerous under standard conditions) and is shown to be general in its applicability.
View Article and Find Full Text PDF