Improved materials for peripheral nerve repair are needed for the advancement of new surgical techniques in fields spanning from oncology to trauma. In this study, we developed bioresorbable materials capable of producing repeated electric field gradients spaced 600 μm apart to assess the impact on neuronal cell growth, and migration. Electrically conductive, biphasic composites comprised of poly (glycerol) sebacate acrylate (PGSA) alone, and doped with poly (pyrrole) (PPy), were prepared to create alternating segments with high and low electrically conductivity.
View Article and Find Full Text PDFPoly(glycerol sebacate) (PGS)/nanohydroxyapatite (nHA) composites were assessed to develop new materials for closure via tissue transport for nonhealing defects (e.g., cleft palate and large skin wounds).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2015
Development of resorbable elastic composites as an alternative means to apply contractive forces for manipulating craniofacial bones is described herein. Composites made from the biodegradable elastomer, poly (1,8-octanediol co-citric acid) (POC), and hydroxyapatite (nHA) with a 200 nm diameter (0-20% loadings) were created to develop a material capable of applying continuous contractive forces. The composites were evaluated for variation in their mechanical properties, rate of degradation, and interaction of the hydroxyapatite nanoparticles with the polymer chains.
View Article and Find Full Text PDFSurgical therapy of cardiovascular disorders frequently requires replacement of diseased tissues with prosthetic devices or grafts. In typical tissue engineering approaches, scaffolds are utilized to serve as templates to support cell growth and remodeling. Decellularized vascular matrices have been previously investigated as scaffolds for tissue engineering.
View Article and Find Full Text PDFThis report presents and describes measures developed for the tracking of care provided to patients referred for evaluation to a sleep clinic and center in a U.S. federal health facility.
View Article and Find Full Text PDF