The dairy industry is known for its extensive use of artificial insemination, which has resulted in a population where most animals can be traced back to only a few sires. Due to their relatedness to the population, old influential sires could still contribute to the accuracy of genomic predictions. The objective of the study was to identify the impact of historically influential sires on the recent population.
View Article and Find Full Text PDFMaintaining genetic variation in a population is important for long-term genetic gain. The existence of subpopulations within a breed helps maintain genetic variation and diversity. The 20,990 genotyped animals, representing the breeding animals in the year 2014, were identified as the sires of animals born after 2010 with at least 25 progenies, and females measured for type traits within the last 2 yr of data.
View Article and Find Full Text PDFHigh relatedness in the US Holstein breed can be attributed to the increased rate of inbreeding that resulted from strong selection and the extensive use of a few bulls via reproductive biotechnology. The objectives of this study were to determine whether clustering could separate selected candidates into genetically different groups and whether such clustering could reduce the expected inbreeding of the next generation. A genomic relationship matrix composed of 1,145 sires with the most registered progeny in the breed born after 1985 was used for principal component analysis and k-means clustering.
View Article and Find Full Text PDFOver half a million Holsteins are being genotyped annually in the United States. The computational cost of including all genotypes in single-step genomic (ssG)BLUP is high, although it is feasible to conduct large-scale genomic prediction using an efficient algorithm such as APY (algorithm for proven and young). An effective method to further reduce the computing cost could be the use of indirect genomic predictions (IGP) for genotyped animals when they have neither progeny nor phenotypes.
View Article and Find Full Text PDFThe objective of this study was to clarify how bias in genomic predictions is created by investigating a relationship among selection intensity, a change in heritability (Δh), and assortative mating (ASM). A change in heritability, resulting from selection, reflects the impact that the Bulmer effect has on the reduction in between-family variation, whereas assortative mating impacts the within-family variance or Mendelian sampling variation. A partial data set up to 2014, including 841K genotyped animals, was used to calculate genomic predictions with a single-step genomic model for 18 linear type traits in US Holsteins.
View Article and Find Full Text PDF