Publications by authors named "T E Lafferty"

Introduction: Blood-based biomarkers (BBMs) can enable early detection of brain amyloid beta (Aβ) pathology in cognitively unimpaired individuals. However, the extent to which common medical conditions affect biomarker performance remains unclear.

Methods: Participants (n = 348) included individuals without cognitive impairment.

View Article and Find Full Text PDF

Objectives: We examine the clinical utility of plasma-based detection for Alzheimer's disease (AD) pathophysiology in older adults with mild cognitive impairment (MCI) and whether cognitive screening can inform when to use plasma-based AD tests.

Methods: Seventy-four community-dwelling older adults with MCI had testing with plasma phosphorylated tau (p-tau) 217 and 181, positron emission tomography (PET) imaging for amyloid beta (Aβ), and cognitive assessment. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of plasma p-tau.

View Article and Find Full Text PDF

Background: Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced.

View Article and Find Full Text PDF

High-performance, resource-efficient methods for plasma amyloid-β (Aβ) quantification in Alzheimer's disease are lacking; existing mass spectrometry-based assays are resource- and time-intensive. We developed a streamlined mass spectrometry method with a single immunoprecipitation step, an optimized buffer system, and ≤75% less antibody requirement. Analytical and clinical performances were compared with an in-house reproduced version of a well-known two-step assay.

View Article and Find Full Text PDF

Background: Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks.

View Article and Find Full Text PDF