Publications by authors named "T E Buse-Pot"

We hypothesize that the attenuated hypertrophic response in old mouse muscle is (1) partly due to a reduced capillarization and angiogenesis, which is (2) accompanied by a reduced oxidative capacity and fatigue resistance in old control and overloaded muscles, that (3) can be rescued by the antioxidant resveratrol. To investigate this, the hypertrophic response, capillarization, oxidative capacity, and fatigue resistance of m. plantaris were compared in 9- and 25-month-old non-treated and 25-month-old resveratrol-treated mice.

View Article and Find Full Text PDF

The age-related decline in muscle function contributes to the movement limitations in daily life in old age. The age-related loss in muscle force is attributable to loss of myofibers, myofiber atrophy, and a reduction in specific force. The contribution of each of these determinants to muscle weakness in old age is, however, largely unknown.

View Article and Find Full Text PDF

During many movements (e.g., running, jumping, and kicking) there is little time for skeletal muscles to build up force, thus rapid force development is important.

View Article and Find Full Text PDF

Force characteristics of skeletal muscle of knockout mice lacking creatine (Cr) due to a deletion of guanidinoacetate methyltransferase (GAMT) were studied in situ. Medial gastrocnemius muscles of anesthetized GAMT-deficient (GAMT-/-) and control (Con) littermates were stimulated at optimum length via the sciatic nerve at different stimulation frequencies (60-250 Hz). GAMT-/- mice showed reduced maximal tetanic and twitch force, reduced relative force at 60 Hz, and increased relaxation times.

View Article and Find Full Text PDF