We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out.
View Article and Find Full Text PDFThe electrical transport properties of epitaxial graphene layers are correlated with the SiC surface morphology. In this study we show by atomic force microscopy and Raman measurements that the surface morphology and the structure of the epitaxial graphene layers change significantly when different pretreatment procedures are applied to nearly on-axis 6H-SiC(0 0 0 1) substrates. It turns out that the often used hydrogen etching of the substrate is responsible for undesirable high macro-steps evolving during graphene growth.
View Article and Find Full Text PDFSci Technol Adv Mater
April 2012
We report a novel, sputtering-based fabrication method of AlO gate insulators on graphene. Electrical performance of dual-gated mono- and bilayer exfoliated graphene devices is presented. Sputtered AlO layers possess comparable quality to oxides obtained by atomic layer deposition with respect to a high relative dielectric constant of about 8, as well as low-hysteresis performance and high breakdown voltage.
View Article and Find Full Text PDFThis review paper summarizes the European nanometrology landscape from a technical perspective. Dimensional and chemical nanometrology are discussed first as they underpin many of the developments in other areas of nanometrology. Applications for the measurement of thin film parameters are followed by two of the most widely relevant families of functional properties: measurement of mechanical and electrical properties at the nanoscale.
View Article and Find Full Text PDFThe near-field probes described in this paper are based on metallized non-contact atomic force microscope cantilevers made of silicon. For application in high-resolution near-field optical/infrared microscopy, we use aperture probes with the aperture being fabricated by focused ion beams. This technique allows us to create apertures of sub-wavelength dimensions with different geometries.
View Article and Find Full Text PDF