Unexpectedly, granular materials can fail, the structure even destroyed, spontaneously in simple isotropic compression with stick-slip-like frictional behaviour. This extreme behaviour is conceptually impossible for saturated two-phase assembly in classical granular physics. Furthermore, the triggering mechanisms of these laboratory events remain mysterious, as in natural earthquakes.
View Article and Find Full Text PDFWe report high-temporal-resolution observations of the spontaneous instability of model granular materials under isotropic and triaxial compression in fully drained conditions during laboratory tests representative of earthquakes. Unlike in natural granular materials, in the model granular materials, during the first stage of the tests, i.e.
View Article and Find Full Text PDFThis study deals with the behaviour of mixtures of sand and saturated kaolin paste considered as composite materials made of permeable and deformable (with non-linear behaviour) matrix (the kaolin paste) with rigid and impervious inclusions (the sand grains). Oedometric and permeability tests conducted on such mixtures highlight the key role of the state of the clay paste, and show the existence of a threshold of sand grain concentration above which a structuring effect influences both modulus and permeability. At the light of these experiments, the usual and tangent homogenization process (with simplifying assumptions to make the problem manageable) has been applied to estimate the mixture permeability and tangent compressibility.
View Article and Find Full Text PDF