The spreading of pathology within and between brain areas is a hallmark of neurodegenerative disorders. In patients with Alzheimer's disease, deposition of amyloid-β is accompanied by activation of the innate immune system and involves inflammasome-dependent formation of ASC specks in microglia. ASC specks released by microglia bind rapidly to amyloid-β and increase the formation of amyloid-β oligomers and aggregates, acting as an inflammation-driven cross-seed for amyloid-β pathology.
View Article and Find Full Text PDFOver the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators.
View Article and Find Full Text PDFAltered epigenetic mechanisms are implicated in the cognitive decline associated with neurodegenerative diseases such as in Alzheimer's disease (AD). AD is the most prevalent form of dementia worldwide; amyloid plaques and neurofibrillary tangles are the histopathological hallmarks of AD. We have recently reported that the inhibition of G9a/GLP complex promotes long-term potentiation (LTP) and its associative mechanisms such as synaptic tagging and capture (STC).
View Article and Find Full Text PDFX-ray pure samples of SrBa8[BN2]6 and EuBa8[BN2]6 were synthesized from appropriate amounts of binary nitrides (Sr3N2, Ba3N2 and BN in sealed niobium ampoules and EuN, Ba3N2 and BN in BN crucibles, respectively) at temperatures up to 1370 K. The structure of SrBa8[BN2]6 was refined from single crystal X-ray diffractometer data: Fd3[combining macron]m, a = 1595.1(1) pm, wR(F(2)) = 0.
View Article and Find Full Text PDFThe fine tuning of neural networks during development and learning relies upon both functional and structural plastic processes. Changes in the number as well as in the size and shape of dendritic spines are associated to long-term activity-dependent synaptic plasticity. However, the molecular mechanisms translating functional into structural changes are still largely unknown.
View Article and Find Full Text PDF