Publications by authors named "T Desaive"

Positive end-expiratory pressure results in a sustained positive intrathoracic pressure, which exerts pressure on intrathoracic vessels, resulting in cardiopulmonary interactions. This sustained positive intrathoracic pressure is known to decrease cardiac preload, and thus, decrease venous return, ultimately reducing both the stroke volume and stressed blood volume of the cardiovascular system. Currently, cardiovascular and pulmonary care are provided independently of one another.

View Article and Find Full Text PDF

Mechanical ventilation is well known for having detrimental effects on the cardiovascular system, particularly when using high positive end-expiratory pressure. High positive end-expiratory pressure levels cause a decrease in stroke volume, which, under normal conditions, usually bring about a decrease in stressed blood volume. Stressed blood volume, defined as the total pressure generating volume of the cardiovascular system, has been shown to be a potential index of fluid responsiveness, making it a potentially important diagnostic tool.

View Article and Find Full Text PDF

Background And Objective: Model-based and personalised decision support systems are emerging to guide mechanical ventilation (MV) treatment for respiratory failure patients. However, model-based treatments require resource-intensive clinical trials prior to implementation. This research presents a framework for generating virtual patients for testing model-based decision support, and direct use in MV treatment.

View Article and Find Full Text PDF

Background And Objective: Mechanical ventilation causes adverse effects on the cardiovascular system. However, the exact nature of the effects on haemodynamic parameters is not fully understood. A recently developed cardio-vascular system model which incorporates cardio-pulmonary interactions is compared to the original 3-chamber cardiovascular model to investigate the exact effects of mechanical ventilation on haemodynamic parameters and to assess the trade-off of model complexity and model reliability between the 2 models.

View Article and Find Full Text PDF