Increasing the use of plant proteins in foods requires improving their physical and chemical properties, such as emulsification, gelation capacity, and thermal stability. These properties determine the acceptability and functionality of food products. Higher protein solubility significantly impacts these properties by affecting denaturation and the stability of emulsifiers or gels.
View Article and Find Full Text PDFAortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) are distinct disorders leading to left ventricular hypertrophy (LVH), but whether cardiac metabolism substantially differs between these in humans remains to be elucidated. We undertook an invasive (aortic root, coronary sinus) metabolic profiling in patients with severe AS and HCM in comparison with non-LVH controls to investigate cardiac fuel selection and metabolic remodeling. These patients were assessed under different physiological states (at rest, during stress induced by pacing).
View Article and Find Full Text PDFFood applications involving plant proteins require modification of their functionality to mimic the unique properties of animal proteins. Enzymatic hydrolysis is commonly used to alter the functionality of plant proteins, particularly to improve their solubility near the isoelectric point. Current methodological approaches mostly indicate improved solubility upon hydrolysis.
View Article and Find Full Text PDF