The last decade has seen significant improvements in our understanding of skyrmions current induced dynamics, along with their room temperature stabilization, however, the impact of local material inhomogeneities still remains an issue that impedes reaching the regime of steady state motion of these spin textures. Here, we study the spin-torque driven motion of skyrmions in synthetic ferrimagnetic multilayers with the aim of achieving high mobility and reduced skyrmion Hall effect. We consider Pt|Co|Tb multilayers of various thicknesses with antiferromagnetic coupling between the Co and Tb magnetization.
View Article and Find Full Text PDFThe exchange bias phenomenon, inherent in exchange-coupled ferromagnetic and antiferromagnetic systems, has intrigued researchers for decades. Van der Waals materials, with their layered structures, offer an ideal platform for exploring exchange bias. However, effectively manipulating exchange bias in van der Waals heterostructures remains challenging.
View Article and Find Full Text PDFMagnetic skyrmions are quasi-particles with a swirling spin texture that form two-dimensional lattices. Skyrmion lattices can exhibit defects in response to geometric constraints, variations of temperature or applied magnetic fields. Measuring deformations in skyrmion lattices is important to understand the interplay between the lattice structure and external influences.
View Article and Find Full Text PDFAltermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations.
View Article and Find Full Text PDFTwo-dimensional van der Waals (vdW) heterostructures are an attractive platform for studying exchange bias due to their defect-free and atomically flat interfaces. Chromium thiophosphate (CrPS), an antiferromagnetic material, possesses uncompensated magnetic spins in a single layer, rendering it a promising candidate for exploring exchange bias phenomena. Recent findings have highlighted that naturally oxidized vdW ferromagnetic FeGeTe exhibits exchange bias, attributed to the antiferromagnetic coupling of its ultrathin surface oxide layer (O-FGT) with the underlying unoxidized FeGeTe.
View Article and Find Full Text PDF