Publications by authors named "T Delord"

Article Synopsis
  • Electric quadrupole traps effectively levitate charged objects, from protons to small particles, influencing their rotational behavior when charge distribution varies.
  • Experiments reveal a shift in motion for microparticles, transitioning from librational to synchronized rotation with the trap drive due to torque effects from the electric quadrupole.
  • This technique showcases versatility by spinning various particles like silicon microrods and microdiamonds, with the latter enabling detailed motion analysis through embedded nitrogen vacancy centers, promising advances in levitated quantum nanomechanics.
View Article and Find Full Text PDF

Establishing connections between material impurities and charge transport properties in emerging electronic and quantum materials, such as wide-bandgap semiconductors, demands new diagnostic methods tailored to these unique systems. Many such materials host optically-active defect centers which offer a powerful in situ characterization system, but one that typically relies on the weak spin-electric field coupling to measure electronic phenomena. In this work, charge-state sensitive optical microscopy is combined with photoelectric detection of an array of nitrogen-vacancy (NV) centers to directly image the flow of charge carriers inside a diamond optoelectronic device, in 3D and with temporal resolution.

View Article and Find Full Text PDF

Experimental noise often contains information about the interactions of a system with its environment, but establishing a relation between the measured time fluctuations and the underlying physical observables is rarely apparent. Here, we leverage a multidimensional and multisensor analysis of spectral diffusion to investigate the dynamics of trapped carriers near subdiffraction clusters of nitrogen-vacancy (NV) centers in diamond. We establish statistical correlations in the spectral fluctuations we measure as we recursively probe the cluster optical resonances, which we then exploit to reveal proximal traps.

View Article and Find Full Text PDF

The last decade has seen an explosive growth in the use of color centers for metrology applications, the paradigm example arguably being the nitrogen-vacancy (NV) center in diamond. Here, we focus on the regime of cryogenic temperatures and examine the impact of spin-selective, narrow-band laser excitation on NV readout. Specifically, we demonstrate a more than fourfold improvement in sensitivity compared to that possible with nonresonant (green) illumination, largely due to a boost in readout contrast and integrated photon count.

View Article and Find Full Text PDF