Publications by authors named "T Del Rio-Gaztelurrutia"

The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from  ∼ 13°-241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere.

View Article and Find Full Text PDF

Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars' ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover's novel environmental sensors and Jezero crater's dusty environment remedy this. In Perseverance's first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty ("dust devils").

View Article and Find Full Text PDF

NASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.

View Article and Find Full Text PDF

In June 2015, Cassini high-resolution images of Saturn's limb southwards of the planet's hexagonal wave revealed a system of at least six stacked haze layers above the upper cloud deck. Here, we characterize those haze layers and discuss their nature. Vertical thickness of layers ranged from 7 to 18 km, and they extended in altitude ∼130 km, from pressure level 0.

View Article and Find Full Text PDF

Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets.

View Article and Find Full Text PDF