Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate.
View Article and Find Full Text PDFSemiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.
View Article and Find Full Text PDFCharacterizing major bovine milk proteins, including whey and casein, is of significant interest in the dairy industry. The diverse array of protein proteoforms can be different in terms of genetic variation, breed ways, lactation stage, and animal nutritional status. Current routine methods for bovine milk protein profiling are typically based on immunological techniques, infrared spectroscopy, slab gel isoelectric focusing, capillary electrophoresis, and high-performance liquid chromatography.
View Article and Find Full Text PDFBranched-chain amino acids (BCAAs) facilitate cancer cell proliferation and survival. Stresses, including X-irradiation, increase BCAA uptake. However, the role of BCAA metabolism in cancer cell survival remains unclear.
View Article and Find Full Text PDFPhotocatalytic reduction of uranyl ions (UO) is an environmentally friendly, energy efficient, and highly effective method for uranium-containing wastewater treatment and uranium recovery. Herein, a novel photocatalytic material CH-8 @NNFO-4 with abundant oxygen vacancies was synthesize by growing Ca(OH) on the surface of Fe doped NaNbO in situ. The Ca(OH) synergizes with the oxygen vacancies, creating a microenvironment that narrows the bandgap and extends the light response range.
View Article and Find Full Text PDF