MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone.
View Article and Find Full Text PDFDeletion polymorphism of glutathione S-transferase M1 (GSTM1), a phase II detoxification and antioxidant enzyme, increases susceptibility to end-stage renal disease (ESRD) as well as the development of cardiovascular diseases (CVD) among ESRD patients and leads to their shorter cardiovascular survival. The mechanisms by which GSTM1 downregulation contributes to oxidative stress and inflammation in endothelial cells in uremic conditions have not been investigated so far. Therefore, the aim of the present study was to elucidate the effects of GSTM1 knockdown on oxidative stress and expression of a panel of inflammatory markers in human umbilical vein endothelial cells (HUVECs) exposed to uremic serum.
View Article and Find Full Text PDFBackground: Increased oxidative stress is a hallmark of end-stage renal disease. Hemodialysis (HD) patients lacking glutathione transferase M1 (GSTM1) enzyme activity exhibit enhanced oxidative DNA damage and higher mortality rate than those with active GSTM1 enzyme. To our knowledge, this is the first study to use the vitamin E-bonded membranes (VEM) in patients with homozygous gene deletion, and we aimed to determine the effect of VEM on oxidative and inflammatory status in HD patients with homozygous gene deletion.
View Article and Find Full Text PDFThe oxidative stress response via Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) interlinks inflammation- and metabolism-related pathways in chronic kidney disease. We assessed the association between polymorphisms in Nrf2, superoxide dismutase (SOD2), glutathione peroxidase (GPX1), and the risk of end-stage renal disease (ESRD). The modifying effect of these polymorphisms on both oxidative phenotype and ESRD prognosis, both independently and/or in combination with the glutathione S-transferase M1 () deletion polymorphism, was further analyzed.
View Article and Find Full Text PDFIntroduction: Overall survival of patients with end-stage renal disease (ESRD) remains poor. Oxidative stress is one of the major risk factors associated with mortality in this patient group. As glutathione S-transferases (GST) are well-established antioxidants, we hypothesized that a model including GST gene polymorphisms, oxidative damage byproducts and cell adhesion markers has a prognostic role in ESRD patient survival.
View Article and Find Full Text PDF