Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.
View Article and Find Full Text PDFOncolytic virotherapy is a promising form of cancer treatment that uses viruses to infect and kill cancer cells. In addition to their direct effects on cancer cells, the viruses stimulate various immune responses partly directed against the tumour. Efforts are made to genetically engineer oncolytic viruses to enhance their immunogenic potential.
View Article and Find Full Text PDFFor the rational design of epitope-specific vaccines, identifying epitopes that can be processed and presented is essential. As algorithm-based epitope prediction is frequently discordant with actually recognized CD8 T-cell epitopes, we developed an in vitro CD8 T-cell priming protocol to enable the identification of truly and functionally expressed HLA class I epitopes. The assay was established and validated to identify epitopes presented by hepatitis C virus (HCV)-infected cells.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune response. In this review, we synthesize the current literature on the molecular circuits of immune sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells, cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream activation of immune pathways. These sequential sense-and-response mechanisms involve the triggering of molecular sensors by viruses or infected cells to activate transcription factors and related genes for a breadth of immune responses.
View Article and Find Full Text PDFTumor-associated myeloid cells, including macrophages and myeloid-derived suppressor cells, can be highly prevalent in solid tumors and play a significant role in the development of the tumor. Therefore, myeloid cells are being considered potential targets for cancer immunotherapies. In this review, we focused on strategies aimed at targeting tumor-associated macrophages (TAMs).
View Article and Find Full Text PDF