Publications by authors named "T D Osslund"

Purpose: Filgrastim (NEUPOGEN) is the originator recombinant human granulocyte colony-stimulating factor widely used for preventing neutropenia-related infections and mobilizing hematopoietic stem cells. This report presents findings of a systematic literature review and meta-analysis of efficacy and safety of originator filgrastim to update previous reports.

Methods: A literature search of electronic databases, congress abstracts, and bibliographies of recent reviews was conducted to identify English-language reports of clinical trials and observational studies evaluating filgrastim in its US-approved indications up to February 2015.

View Article and Find Full Text PDF

Crystallization holds the potential to be used for protein purification and low-viscosity drug substance and drug product formulations. Twenty-two different proteins (20 monoclonal antibodies and two Fc-fusions) were examined to determine the breadth of applicability of crystallization to these therapeutic proteins. Vapor diffusion technique and an evaporative screening method were used to identify crystallization conditions using around a 100 initial conditions based on reagents that are generally regarded as safe (GRAS).

View Article and Find Full Text PDF

Protein synthesis and secretion are essential to cellular life. Although secretory activities may vary in different cell types, what determines the maximum secretory capacity is inherently difficult to study. Increasing protein synthesis until reaching the limit of secretory capacity is one strategy to address this key issue.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (CDK5) is a serine/threonine protein kinase and its deregulation is implicated in a number of neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Using active site homology modeling between CDK5 and CDK2, we explored several different chemical series of potent CDK5 inhibitors. In this report, we describe the design, synthesis, and CDK5 inhibitory activities of quinolin-2(1H)-one derivatives.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase that plays a critical role in the early development of the nervous system. Deregulation of CDK5 is believed to contribute to the abnormal phosphorylation of various cellular substrates associated with neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Acyclic urea 3 was identified as a potent CDK5 inhibitor and co-crystallographic data of urea 3/CDK2 enzyme were used to design a novel series of 3,4-dihydroquinazolin-2(1H)-ones as CDK5 inhibitors.

View Article and Find Full Text PDF