Publications by authors named "T D Mogg"

Oxidized β-carotene (OxBC), a phytochemical that occurs naturally in plants, is formed by the spontaneous reaction of β-carotene with ambient oxygen. Synthetic OxBC, obtained by full oxidation of β-carotene with air, shows considerable promise as an in-feed antimicrobial alternative additive that enhances health and performance in livestock. OxBC is predominantly composed of β-carotene-oxygen copolymers that have beneficial immune-modulating effects that occur within the innate immune system by priming it to face microbial challenges and by mitigating the inflammatory response.

View Article and Find Full Text PDF

Spontaneous oxidation of β-carotene yields a polymer-rich product (OxBC) together with minor amounts of many apocarotenoids. OxBC's activity extends β-carotene's benefits beyond vitamin A, finding utility in supporting health in livestock, pets, and humans. Although the naturally occurring form of OxBC is consumed in foods and feeds, a direct demonstration of synthetic OxBC's safety provides additional support for its usage.

View Article and Find Full Text PDF

β-Carotene oxidation products have newly discovered bioactivity in plants and animals. Synthetic fully oxidized β-carotene (OxBC) has application in supporting livestock health, with potential human applications. The safety of synthetic OxBC has been evaluated.

View Article and Find Full Text PDF

We reported previously that the spontaneous oxidation of β-carotene and other carotenoids proceeds predominantly by formation of carotenoid-oxygen copolymers and that β-carotene copolymers exhibit immunological activity, including priming innate immune function and limiting inflammatory processes. Oxidative loss of carotenoids in fruits and vegetables occurs during processing. Here we report evidence for the occurrence of associated analogous copolymer compounds.

View Article and Find Full Text PDF

In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals.

View Article and Find Full Text PDF