Oltipraz and related dithiolethiones constitute an important class of chemopreventive agents that enhance the expression of carcinogen detoxication and antioxidant genes. Dose-response studies were undertaken to characterize the cancer chemopreventive activities of several dithiolethiones that are at least as active as oltipraz as inducers. Inhibition of formation of pre-neoplastic lesions and formation of DNA adducts in livers of rats exposed to aflatoxin B1 (AFB1) was monitored.
View Article and Find Full Text PDFPhase II detoxifying enzymes like NAD(P)H (quinone acceptor)oxidoreductase1 (NQO1), glutathione S-transferases (GST), and UDP-glucuronyltransferases (UGT) may play an important role in preventing carcinogen-induced cancers. Inducers of these enzymes have been shown to inhibit carcinogen-induced colon tumors in rat and mouse models. However, it has not been clearly demonstrated that NQO1 contributes to this effect.
View Article and Find Full Text PDFThe combination of P4S10 and hexamethyldisiloxane efficiently converts esters, lactones, amides, lactams, and ketones to their corresponding thiono derivatives. In the presence of elemental sulfur, 3-oxoesters are converted to dithiolethiones by this reagent. Yields are comparable to or superior to those obtained with Lawesson's reagent.
View Article and Find Full Text PDFWe report the chemical synthesis of a new photoactivatable cholesterol analog 7,7-azocholestanol (AC) and its linoleate ester (ACL). We also examined the biochemical properties of the sterol and its ester by employing several different mutant Chinese hamster ovary (CHO) cell lines with defined abnormalities in cholesterol metabolism as tools. AC mimics cholesterol in supporting the growth of a mutant cell line (M19) that requires cholesterol for growth.
View Article and Find Full Text PDFDrug Metabol Drug Interact
March 2001
One of the major mechanisms of protection against carcinogenesis, mutagenesis, and other forms of toxicity mediated by carcinogens is the induction of enzymes involved in their metabolism, particularly phase 2 enzymes such as glutathione S-transferases, UDP-glucuronosyl transferases, and quinone reductases. Animal studies indicate that induction of phase 2 enzymes is a sufficient condition for obtaining chemoprevention and can be achieved by administering any of a diverse array of naturally-occurring and synthetic chemopreventive agents. Alliaceous and cruciferous plants are rich in organosulfur compounds with inducer activity.
View Article and Find Full Text PDF